skip to main content


Search for: All records

Creators/Authors contains: "Becker, Kendall M. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Snags, standing dead trees, are becoming more abundant in forests as tree mortality rates continue to increase due to fire, drought, and bark beetles. Snags provide habitat for birds and small mammals, and when they fall to the ground, the resulting logs provide additional wildlife habitat and affect nutrient cycling, fuel loads, and fire behavior. Predicting how long snags will remain standing after fire is essential for managing habitat, understanding chemical cycling in forests, and modeling forest succession and fuels. Few studies, however, have quantified how fire changes snag fall dynamics.

    Results

    We compared post-fire fall rates of snags that existed pre-fire (n= 2013) and snags created during or after the fire (n= 8222), using 3 years of pre-fire and 5 years of post-fire data from an annually monitored, 25.6-ha spatially explicit plot in an old-growthAbies concolor–Pinus lambertianaforest in the Sierra Nevada, CA, USA. The plot burned at low to moderate severity in the Rim Fire of 2013. We used random forest models to (1) identify predictors of post-fire snag fall for pre-existing and new snags and (2) assess the influence of spatial neighborhood and local fire severity on snag fall after fire. Fall rates of pre-existing snags increased 3 years after fire. Five years after fire, pre-existing snags were twice as likely to fall as new snags. Pre-existing snags were most likely to persist 5 years after fire if they were > 50 cm in diameter, > 20 m tall, and charred on the bole to heights above 3.7 m. New snags were also more likely to persist 5 years after fire if they were > 20 m tall. Spatial neighborhood (e.g., tree density) and local fire severity (e.g., fire-caused crown injury) within 15 m of each snag barely improved predictions of snag fall after fire.

    Conclusions

    Land managers should expect fall rates of pre-existing snags to exceed fall rates of new snags within 5 years after fire, an important habitat consideration because pre-existing snags represent a wider range of size and decay classes.

     
    more » « less
  2. Abstract

    Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt.

     
    more » « less